Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 931048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204554

RESUMO

Background: We recently reported that individuals with impaired plantar sensation and high fall risk due to sensory peripheral neuropathy (PN) improved gait and balance function following 10 weeks of use of Walkasins®, a wearable lower limb sensory prosthesis that provides directional specific mechanical tactile stimuli related to plantar pressure measurements during standing and walking (RxFunction Inc., Eden Prairie, MN, United States). Here, we report 26-week outcomes and compare pre- and in-study fall rates. We expected improvements in outcomes and reduced fall rates reported after 10 weeks of use to be sustained. Materials and methods: Participants had clinically diagnosed PN with impaired plantar sensation, high fall risk (Functional Gait Assessment, FGA score < 23) and ability to sense tactile stimuli above the ankle at the location of the device. Additional outcomes included 10 m Gait Speed, Timed Up and Go (TUG), Four-Stage Balance Test, and self-reported outcomes, including Activities-Specific Balance Confidence scale and Vestibular Disorders Activities of Daily Living Scale. Participants tracked falls using a calendar. Results: We assessed falls and self-reported outcomes from 44 individuals after 26 weeks of device use; 30 of them conducted in-person testing of clinical outcomes. Overall, improvements in clinical outcomes seen at 10 weeks of use remained sustained at 26 weeks with statistically significant increases compared to baseline seen in FGA scores (from 15.0 to 19.2), self-selected gait speed (from 0.89 to 0.97 m/s), and 4-Stage Balance Test (from 25.6 to 28.4 s), indicating a decrease in fall risk. Non-significant improvements were observed in TUG and fast gait speed. Overall, 39 falls were reported; 31 of them did not require medical treatment and four caused severe injury. Participants who reported falls over 6 months prior to the study had a 43% decrease in fall rate during the study as compared to self-report 6-month pre-study (11.8 vs. 6.7 falls/1000 patient days, respectively, p < 0.004), similar to the 46% decrease reported after 10 weeks of use. Conclusion: A wearable sensory prosthesis can improve outcomes of gait and balance function and substantially decreases incidence of falls during long-term use. The sustained long-term benefits in clinical outcomes reported here lessen the likelihood that improvements are placebo effects. Clinical trial registration: ClinicalTrials.gov, identifier #NCT03538756.

2.
Prosthet Orthot Int ; 46(2): 202-205, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932513

RESUMO

BACKGROUND: Individuals with lower limb loss often wear a gel liner and enclosed socket for connecting to a terminal prosthetic device. Historically, a significant limitation to traditional liners and sockets is that they are thermal insulators, thereby trapping heat and moisture within, which can lead to numerous deleterious issues, including loss of suspension and residual limb skin problems, and, in turn, reductions in mobility, function, and overall quality of life. To mitigate these issues, new approaches are therefore needed to enhance the residual limb climate (e.g. breathability and air permeability), allowing the dispersal of heat and moisture from within the liner and socket. METHODS: In this study, a multidisciplinary team sought to establish the feasibility of an innovative prosthetic liner-socket system, designed to improve residual limb climate by capitalizing on passive (i.e. nonpowered) ventilation to reduce temperature/moisture and improve socket comfort for persons with transtibial amputations. Focus group meetings, along with an iterative design approach, were implemented to establish innovative design and development concepts that led to a passively ventilated liner-socket system. CONCLUSIONS: Ex vivo design has supported the feasibility of developing a passively ventilated liner-socket. To build on these successes, future development and human subjects testing are needed to finalize a commercially viable system. Implementing a passively ventilated liner-socket system that improves residual limb health and comfort, without compromising function or mobility of the user, into standard clinical care may encourage a more active lifestyle and enhance the quality of life for individuals after lower limb loss.


Assuntos
Membros Artificiais , Qualidade de Vida , Cotos de Amputação , Humanos , Extremidade Inferior , Desenho de Prótese
3.
Front Neurosci ; 15: 709422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483828

RESUMO

A hallmark of human locomotion is that it continuously adapts to changes in the environment and predictively adjusts to changes in the terrain, both of which are major challenges to lower limb amputees due to the limitations in prostheses and control algorithms. Here, the ability of a single-network nonlinear autoregressive model to continuously predict future ankle kinematics and kinetics simultaneously across ambulation conditions using lower limb surface electromyography (EMG) signals was examined. Ankle plantarflexor and dorsiflexor EMG from ten healthy young adults were mapped to normal ranges of ankle angle and ankle moment during level overground walking, stair ascent, and stair descent, including transitions between terrains (i.e., transitions to/from staircase). Prediction performance was characterized as a function of the time between current EMG/angle/moment inputs and future angle/moment model predictions (prediction interval), the number of past EMG/angle/moment input values over time (sampling window), and the number of units in the network hidden layer that minimized error between experimentally measured values (targets) and model predictions of ankle angle and moment. Ankle angle and moment predictions were robust across ambulation conditions with root mean squared errors less than 1° and 0.04 Nm/kg, respectively, and cross-correlations (R2) greater than 0.99 for prediction intervals of 58 ms. Model predictions at critical points of trip-related fall risk fell within the variability of the ankle angle and moment targets (Benjamini-Hochberg adjusted p > 0.065). EMG contribution to ankle angle and moment predictions occurred consistently across ambulation conditions and model outputs. EMG signals had the greatest impact on noncyclic regions of gait such as double limb support, transitions between terrains, and around plantarflexion and moment peaks. The use of natural muscle activation patterns to continuously predict variations in normal gait and the model's predictive capabilities to counteract electromechanical inherent delays suggest that this approach could provide robust and intuitive user-driven real-time control of a wide variety of lower limb robotic devices, including active powered ankle-foot prostheses.

4.
J Biomech ; 127: 110701, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34461366

RESUMO

There exist limited data to guide the development of methodologies for evaluating impact resilience of prosthetic ankle-foot systems, particularly regarding human-device interaction in ecologically valid scenarios. The purpose of this study was to biomechanically characterize foot-ground interactions during drop-landings among Service members with and without unilateral transtibial limb loss. Seven males with, and seven males without, unilateral transtibial limb loss completed six drop-landing conditions consisting of all combinations of three heights (20 cm, 40 cm, 60 cm) and two loads (with and without a 22.2 kg weighted vest). Peak ground reaction forces (GRF), vertical GRF loading rate and impulse, as well as ankle-foot, knee, and hip joint negative (absorption) powers and work were compared across groups (i.e., contralateral side and prosthetic side vs. uninjured controls) by height and load conditions. Loading occurred primarily in the vertical direction, and increased with increasing drop height and/or with added load. Vertical GRFs were overall ~ 15% smaller on the prosthetic side (vs. controls) with similar loading rates across limbs/groups. From the most challenging condition (i.e., 60 cm with 22 kg load), ankle-foot absorption energies on the prosthetic side were 64.6 (7.2) J; corresponding values were 187.4 (8.9) J for the contralateral limb and 161.2 (6.7) J among uninjured controls. Better understanding biomechanical responses to drop-landings in ecological scenarios will help inform future iterations of mechanical testing methodologies for evaluating impact resilience of prosthetic ankle-foot systems (enhancing prescription criteria and return-to-activity considerations) as well as identifying and mitigating risk factors for long-term secondary complications within the contralateral limb (e.g., joint degeneration).


Assuntos
Amputados , Membros Artificiais , Articulação do Tornozelo , Fenômenos Biomecânicos , Humanos , Joelho , Articulação do Joelho , Masculino
5.
Front Aging Neurosci ; 12: 592751, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240077

RESUMO

BACKGROUND: Sensory peripheral neuropathy (PN) is associated with gait, balance problems and high fall risk. The walk2Wellness trial investigates effects of long-term, home-based daily use of a wearable sensory prosthesis on gait function, balance, quality of life and fall rates in PN patients. The device (Walkasins®, RxFunction Inc., MN, United States) partially substitutes lost nerve function related to plantar sensation providing directional tactile cues reflecting plantar pressure measurements during standing and walking. We tested the null hypothesis that the Functional Gait Assessment (FGA) score would remain unchanged after 10 weeks of use. METHODS: Participants had PN with lost plantar sensation, gait and balance problems, an FGA score < 23 (high fall risk), and ability to sense tactile stimuli above the ankle. Clinical outcomes included FGA, Gait Speed, Timed Up&Go (TUG) and 4-Stage Balance Test. Patient-reported outcomes included Activities-Specific Balance Confidence (ABC) scale, Vestibular Disorders Activities of Daily Living Scale, PROMIS participation and satisfaction scores, pain rating, and falls. Evaluations were performed at baseline and after 2, 6, and 10 weeks. Subjects were not made aware of changes in outcomes. No additional balance interventions were allowed. RESULTS: Forty-five participants of 52 enrolled across four sites completed in-clinic assessments. FGA scores improved from 15.0 to 19.1 (p < 0.0001), normal and fast gait speed from 0.86 m/s to 0.95 m/s (p < 0.0001) and 1.24 m/s to 1.33 m/s (p = 0.002), respectively, and TUG from 13.8 s to 12.5 s (p = 0.012). Four-Stage Balance Test did not improve. Several patient-reported outcomes were normal at baseline and remained largely unchanged. Interestingly, subjects with baseline ABC scores lower than 67% (high fall risk cut-off) increased their ABC scores (49.9% to 59.3%, p = 0.01), whereas subjects with ABC scores above 67% showed a decrease (76.6% to 71.8%, p = 0.019). Subjects who reported falls in the prior 6 months (n = 25) showed a decrease in the number of fall-risk factors (5.1 to 4.3, p = 0.023) and a decrease in fall rate (13.8 to 7.4 falls/1000 days, p = 0.014). Four pre-study non-fallers (n = 20) fell during the 10 weeks. CONCLUSION: A wearable sensory prosthesis presents a new way to treat gait and balance problems and manage falls in high fall-risk patients with PN. TRIAL REGISTRATION: ClinicalTrials.gov (#NCT03538756).

6.
J Biomech ; 98: 109395, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31668413

RESUMO

Selecting an optimal prosthetic foot is particularly challenging for highly active individuals with limb loss, such as military personnel, who need to seamlessly perform a variety of demanding activities/tasks (often with and without external loads) while minimizing risk of musculoskeletal injuries over the longer term. Here, we expand on prior work by comparing biomechanical and functional outcomes in two prosthetic feet with the largest differences in mechanical response to added load (i.e., consistently "Compliant" and "Stiff" forefoot properties). In each foot, fourteen male Servicemembers with unilateral transtibial limb loss (from trauma) completed instrumented gait analyses in all combinations of two loading conditions (with and without 22 kg weighted vest) and two walking speeds (1.34 and 1.52 m/s), as well as the Prosthesis Evaluation Questionnaire. With the Stiff foot, sound limb peak loading was 2% smaller (p = 0.043) in the loaded versus unloaded condition, but similar between loading conditions in the Compliant foot (note, the Stiff foot was associated with larger loads, overall). Independent of load or walking speed, the Compliant (versus Stiff) foot provided 67.9% larger (p < 0.001) prosthetic push-off, 17.7% larger (p = 0.01) roll-over shape radii, and was subjectively favored by 10 participants. A more Compliant versus Stiff prosthetic foot therefore appears to better accommodate walking with and without added load, and reinforce the notion that mechanical properties of prosthetic feet should be considered for near-term performance and longer-term (joint) health.


Assuntos
Amputados , Membros Artificiais , , Fenômenos Mecânicos , Militares , Tíbia , Caminhada , Adulto , Fenômenos Biomecânicos , Humanos , Masculino
7.
PLoS One ; 14(4): e0216212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31039180

RESUMO

Peripheral neuropathy may cause loss of sensory information from plantar cutaneous mechanoreceptors that is important for balance control and falls management. The current study investigated short-term effects of using Walkasins, an external lower-limb sensory neuroprosthesis, on clinical outcomes of balance and gait in persons who reported peripheral neuropathy and balance problems. The device replaces lost plantar sensation with tactile balance information that modulates cutaneous mechanoreceptors above the ankle where sensation is intact. Thirty-one male community-dwelling Veterans, 56-84 years old with insensate feet and balance problems participated. Initial Functional Gait Assessment, gait speed, and 4-Stage Balance Test outcomes were assessed. After initial assessment, subjects were randomly assigned to either wearing Walkasins turned ON, or OFF, and outcomes were re-assessed following a set of standardized balance exercises. Following a one-hour rest and washout period, treatments were crossed-over between groups and a third outcomes assessment was performed. Before cross-over, 10 of 15 subjects in the ON-then-OFF group improved their Functional Gait Assessment score by at least four points, the Minimal Clinically Important Difference, compared to 5 of 16 in the OFF-then-ON group. After cross-over, 7 of 16 subjects in the OFF-then-ON group improved by at least four points versus 2 of 15 in the ON-then-OFF group. ON treatment was associated with a Functional Gait Assessment improvement of 4.4 ± 3.7 points versus 1.5 ± 1.2 for the OFF treatment (p<0.01). Overall, Functional Gait Assessment scores changed from 15.2 ± 4.8 at initial assessment to 21.1 ± 5.2 after final assessment (p<0.001). At the end of the two treatment sessions, 16 of the 31 individuals had improved their Functional Gait Assessment score beyond 23, indicating normal fall-risk status. Future studies should investigate long-term benefits of the device to reduce fall risk and actual falls in patients with peripheral neuropathy and balance problems.


Assuntos
Pé/fisiopatologia , Marcha/fisiologia , Próteses Neurais , Equilíbrio Postural/fisiologia , Idoso , Estudos Cross-Over , Feminino , Humanos , Masculino
8.
PLoS One ; 13(9): e0204512, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30256851

RESUMO

Previous work suggests that to restore postural stability for individuals with lower-limb amputation, ankle-foot prostheses should be designed with a flat effective rocker shape for standing. However, most commercially available ankle-foot prostheses are designed with a curved effective rocker shape for walking. To address the demands of both standing and walking, we designed a novel bimodal ankle-foot prosthesis that can accommodate both functional modes using a rigid foot plate and an ankle that can lock and unlock. The primary objective of this study was to determine if the bimodal ankle-foot system could improve various aspects of standing balance (static, dynamic, and functional) and mobility in a group of Veterans with lower-limb amputation (n = 18). Standing balance was assessed while subjects completed a series of tests on a NeuroCom Clinical Research System (NeuroCom, a Division of Natus, Clackamas, OR), including a Sensory Organization Test, a Limits of Stability Test, and a modified Motor Control Test. Few statistically significant differences were observed between the locked and unlocked ankle conditions while subjects completed these tests. However, in the absence of visual feedback, the locked bimodal ankle appeared to improve static balance in a group of experienced lower-limb prosthesis users whose PLUS-M mobility rating was higher than approximately 73% of the sample population used to develop the PLUS-M survey. Given the statistically significant increase in mean equilibrium scores between the unlocked and locked conditions (p = 0.004), future testing of this system should focus on new amputees and lower mobility users (e.g., Medicare Functional Classification Level K1 and K2 prosthesis users). Furthermore, commercial implementation of the bimodal ankle-foot system should include a robust control system that can automatically switch between modes based on the user's activity.


Assuntos
Tornozelo , Membros Artificiais , , Equilíbrio Postural , Adulto , Idoso , Amputados , Fenômenos Biomecânicos , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Equilíbrio Postural/fisiologia , Desenho de Prótese , Sensação/fisiologia , Posição Ortostática , Veteranos , Caminhada/fisiologia
9.
PLoS One ; 13(9): e0202884, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30208040

RESUMO

Many Service members and Veterans with lower-limb amputations have the potential for high function and the desire to resume physically demanding occupations that require them to carry heavy loads (e.g., military service, firefighters, farmers, ranchers, construction workers). However, it is currently unclear which prosthetic feet best accommodate heavy load carriage while also providing good overall function and mobility during unweighted activities. The main objective of this study was to investigate the ability of currently available prosthetic ankle-foot systems to accommodate weighted walking by examining the mechanical characteristics (i.e., forefoot stiffness) and dynamic function (i.e., rocker radius, effective foot length ratio, and late-stance energy return) of prosthetic feet designed for high activity users. Load versus deflection curves were obtained for nine prosthetic ankle-foot systems using a servohydraulic test frame and load cell. Effective roll-over shape characteristics and late-stance energy return measures were then obtained using quantitative gait analysis for three users with unilateral, transtibial amputation. Results from mechanical and dynamic testing showed that although forefoot stiffness varied across the nine feet investigated in this study, changes measured in roll-over shape radius and effective foot length ratio were relatively small in response to weighted walking. At the same time, prosthetic feet with more compliant forefoot keel structures appeared to provide more late-stance energy return compared to feet with stiffer forefoot keel structures. These results suggest that prosthetic ankle-foot systems with compliant forefoot keel structures may better accommodate weighted walking by reducing the metabolic cost of physically demanding activities. However, to more fully understand the biomechanical and functional implications of these results, other factors, such as the residual-limb strength of the user and the overall stiffness profile of the prosthetic foot, should also be considered.


Assuntos
Membros Artificiais , , Fenômenos Mecânicos , Caminhada , Adulto , Tornozelo , Humanos , Teste de Materiais , Suporte de Carga
10.
PLoS One ; 12(3): e0173423, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278172

RESUMO

In recent years, numerous prosthetic ankle-foot devices have been developed to address the demands of sloped walking for individuals with lower-limb amputation. The goal of this study was to compare the performance of a passive, hydraulic ankle-foot prosthesis to two related, non-hydraulic ankles based on their ability to minimize the socket reaction moments of individuals with transtibial amputation during a range of sloped walking tasks. After a two-week accommodation period, kinematic data were collected on seven subjects with a transtibial amputation walking on an instrumented treadmill set at various slopes. Overall, this study was unable to find significant differences in the torque at the distal end of the prosthetic socket between an ankle-foot prosthesis with a hydraulic range-of-motion and other related ankle-foot prosthesis designs (rigid ankle, multiaxial ankle) during the single-support phase of walking. In addition, socket comfort and perceived exertion were not significantly different for any of the ankle-foot prostheses tested in this study. These results suggest the need for further work to determine if more advanced designs (e.g., those with microprocessor control of hydraulic features, powered ankle-foot designs) can provide more biomimetic function to prosthesis users.


Assuntos
Tornozelo , , Fenômenos Mecânicos , Próteses e Implantes , Caminhada/fisiologia , Adulto , Feminino , Humanos , Hidrodinâmica , Masculino , Pessoa de Meia-Idade , Desenho de Prótese
11.
J Rehabil Res Dev ; 53(6): 1089-1106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28355034

RESUMO

Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (i.e., the ANT condition), participants significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, participants also decreased the rate at which they loaded their prosthesis, decreased their affected-side step length, increased their trunk flexion, and maintained their prosthesis in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, comparatively few significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee joint control.


Assuntos
Amputação Cirúrgica , Marcha , Prótese do Joelho , Joelho , Ajuste de Prótese , Caminhada/fisiologia , Adulto , Amputados , Membros Artificiais , Fenômenos Biomecânicos , Estudos Cross-Over , Feminino , Humanos , Articulação do Joelho , Masculino , Pessoa de Meia-Idade , Postura , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...